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1
OBJECT INVESTIGATION AND
CLASSIFICATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims priority to U.S.
provisional patent application 61/750,674, entitled “Appa-
ratus and Method for Characterizing, Discriminating, and
Identifying Objects Based on Tactile Properties,” filed Jan.
9, 2013. The entire content of this application is incorporated
herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
Contract No. D11PC20121, awarded by the Defense
Advanced Research Projects Agency (DARPA). The gov-
ernment has certain rights in the invention.

BACKGROUND

Touch may require movements to be made with fingertips
in order to sense information about what the fingers are
touching. The nature of these movements may be optimized
to extract the tactile properties of an object that may be
useful for identifying the object. Experimental psychologists
have observed a number of useful types of exploratory
movements that humans make when identifying objects by
touch, such as hefting, enclosing, applying pressure, and
sliding. (Lederman, S J, and R L Klatzky. 1987. “Hand
Movements: a Window Into Haptic Object Recognition.”
Cognitive Psychology 19: 342-368.). However, even within
these discrete sets of movements, there may be many ways
in which these movements can be executed to collect
information. For instance, different combinations of forces
and sliding trajectories could be made when performing a
sliding movement. Given the large number of possible
movements and variations in parameters, it may be imprac-
tical to perform every possible movement to collect every
piece of information before identifying what is being
touched. Similar problems may arise during any type of
diagnostic task when it may be impractical to collect all
information before making a decision. For example, the
definitive diagnosis of a disease given an initial set of
symptoms could benefit from a very large number of pos-
sible tests, each of which takes a significant amount of time
and money to perform. Physicians use a subjective process
called differential diagnosis to estimate the probability of
each possible diagnosis and the potential of each available
test to differentiate among them. It would be advantageous
to have an objective method to determine the most efficient
sequence of tests to arrive at a final diagnosis.

Human skin contains a variety of neural transducers that
sense mechanical strain, vibrations, and thermal information
(Jones, L A, and S J. Lederman. 2006. Human Hand Func-
tion. New York, N.Y.: Oxford University Press, USA.;
Vallbo, A B, and R S Johansson. 1984. “Properties of
Cutaneous Mechanoreceptors in the Human Hand Related to
Touch Sensation.” Human Neurobiology 3 (1): 3-14.). The
skin and its sensory transducers are highly evolved and
specialized in structure, and the glabrous skin found on the
palmar surface of the human hand, and in particular the
fingertip, may possess a higher density of cutaneous recep-
tors than the hairy skin on the rest of the body (Vallbo, A B,
and R S Johansson. 1978. “The Tactile Sensory Innervation
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of the Glabrous Skin of the Human Hand.” In Active Touch,
the Mechanism of Recognition of Objects by Manipulation,
edited by G Gordon, 29-54. Oxford: Pergamon Press Ltd.;
Johansson, R S, and A B Vallbo. 1979. “Tactile Sensibility
in the Human Hand: Relative and Absolute Densities of Four
Types of Mechanoreceptive Units in Glabrous Skin.” Jour-
nal of Physiology 286 (1): 283.). A device that mimics these
sensory capabilities has been described in a form factor that
has size, shape and mechanical properties similar to a human
fingertip (U.S. Pat. Nos. 7,658,110, 7,878,075, 8,181,540
and 8,272,278). Other tactile sensors designed to replicate
human touch have been described in a number of literature
reviews covering several decades of research (Nicholls, HR,
and M H Lee. 1989. “A Survey of Robot Tactile Sensing
Technology.” International Journal of Robotics Research 8
(3): 3-30.; Howe, R D. 1994. “Tactile Sensing and Control
of Robotic Manipulation.” Advanced Robotics 8 (3): 245-
261.; Lee, M H, and H R Nicholls. 1999. “Tactile Sensing
for Mechatronics—a State of the Art Survey.” Mechatronics
9: 1-31.; Dahiya, R S, G Metta, M Valle, and G Sandini.
2010. “Tactile Sensing—From Humans to Humanoids.”
IEEE Transactions on Robotics 26 (1): 1-20.).

Another approach is artificial texture recognition with
tactile sensors (Tada, Y, K Hosoda, and M Asada. 2004.
“Sensing Ability of Anthropomorphic Fingertip with Multi-
Modal Sensors.” In Proc. IEEE International Conference on
Intelligent Robots and Systems, 1005-1012.; Mukaibo, Y, H
Shirado, M Konyo, and T Maeno. 2005. “Development of a
Texture Sensor Emulating the Tissue Structure and Percep-
tual Mechanism of Human Fingers.” In Proc. IEEE Inter-
national Conference on Robotics and Automation, 2565-
2570. IEEE.; Hosoda, K, Y Tada, and M Asada. 2006.
“Anthropomorphic Robotic Soft Fingertip with Randomly
Distributed Receptors.” Robotics and Autonomous Systems
54 (2): 104-109.; de Boissieu, F, C Godin, B Guilhamat, D
David, C Serviere, and D Baudois. 2009. “Tactile Texture
Recognition with a 3-Axial Force MEMS Integrated Artifi-
cial Finger.” In Proc. Robotics: Science and Systems,
49-56.; Sinapov, J, and A Stoytchev. 2010. “The Boosting
Effect of Exploratory Behaviors.” In Proc. Association for
the Advancement of Artificial Intelligence, 1613-1618.;
Giguere, P, and G Dudek. 2011. “A Simple Tactile Probe for
Surface Identification by Mobile Robots.” IEEE Transac-
tions on Robotics 27 (3): 534-544.; Oddo, C M, M Con-
trozzi, . Beccai, C Cipriani, and M C Carrozza. 2011.
“Roughness Encoding for Discrimination of Surfaces in
Artificial Active-Touch.” IEEE Transactions on Robotics 27
(3): 522-533.; Jamali, N, and C Sammut. 2011. “Majority
Voting: Material Classification by Tactile Sensing Using
Surface Texture.” IEEE Transactions on Robotics 27 (3):
508-521.; Sinapov, J, V Sukhoy, R Sahai, and A Stoytchev.
2011. “Vibrotactile Recognition and Categorization of Sur-
faces by a Humanoid Robot.” IEEE Transactions on Robot-
ics 27 (3): 488-497.; Chu, V, I McMahon, L Riano, C G
McDonald, Q He, ] M Perez-Tejada, M Arrigo, et al. 2013.
“Using Robotic Exploratory Procedures to Learn the Mean-
ing of Haptic Adjectives.” In Proc. IEEE International
Conference on Robotics and Automation.). The sliding
movements humans make when identifying surface texture
(Lederman, S J, and R L. Klatzky. 1987. “Hand Movements:
a Window Into Haptic Object Recognition.” Cognitive Psy-
chology 19: 342-368.) may be executed with these sensors
over a number of textures to identify which characteristics
make them unique. Various approaches to producing these
movements have been explored, including using anthropo-
morphic hands (Tada, Y, K Hosoda, and M Asada. 2004.
“Sensing Ability of Anthropomorphic Fingertip with Multi-
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Modal Sensors.” In Proc. IEEE International Conference on
Intelligent Robots and Systems, 1005-1012.; Hosoda, K, Y
Tada, and M Asada. 2006. “Anthropomorphic Robotic Soft
Fingertip with Randomly Distributed Receptors.” Robotics
and Autonomous Systems 54 (2): 104-109.; Oddo, C M, M
Controzzi, [ Beccai, C Cipriani, and M C Carrozza. 2011.
“Roughness Encoding for Discrimination of Surfaces in
Artificial Active-Touch.” IEEE Transactions on Robotics 27
(3): 522-533.; Jamali, N, and C Sammut. 2011. “Majority
Voting: Material Classification by Tactile Sensing Using
Surface Texture.” IEEE Transactions on Robotics 27 (3):
508-521.; Chu, V, I McMahon, L. Riano, C G McDonald, Q
He, ] M Perez-Tejada, M Arrigo, et al. 2013. “Using Robotic
Exploratory Procedures to Learn the Meaning of Haptic
Adjectives.” In Proc. IEEE International Conference on
Robotics and Automation.), 2-axis plotting machines (de
Boissieu, F, C Godin, B Guilhamat, D David, C Serviere,
and D Baudois. 2009. “Tactile Texture Recognition with a
3-Axial Force MEMS Integrated Artificial Finger.” In Proc.
Robotics: Science and Systems, 49-56.), robotic arms (Si-
napov, J, V Sukhoy, R Sahai, and A Stoytchev. 2011.
“Vibrotactile Recognition and Categorization of Surfaces by
a Humanoid Robot.” IEEE Transactions on Robotics 27 (3):
488-497.), or manual sliding (Giguere, P, and G Dudek.
2011. “A Simple Tactile Probe for Surface Identification by
Mobile Robots.” IEEE Transactions on Robotics 27 (3):
534-544.). Previous studies employed a fixed exploration
sequence for collecting data, which, after processing, was
fed into a machine learning classifier that sought to identify
the texture. One exception was (Jamali, N, and C Sammut.
2011. “Majority Voting: Material Classification by Tactile
Sensing Using Surface Texture.” IEEE Transactions on
Robotics 27 (3): 508-521.), who repeated the same sliding
movement until the classification reached a desired confi-
dence.

Using additional exploratory movements has been dem-
onstrated to improve performance (Sinapov, J, V Sukhoy, R
Sahai, and A Stoytchev. 2011. “Vibrotactile Recognition and
Categorization of Surfaces by a Humanoid Robot.” IEEE
Transactions on Robotics 27 (3): 488-497.). However,
executing every possible movement to gain all information
about an object may be impractical, so these systems were
restricted to a small number of preprogrammed exploratory
movements. This approach may only provide marginal per-
formance accuracies when using a small number of highly
distinctive surfaces that would be trivial for a human
observer to discriminate. Examples of classification perfor-
mance in previous literature include: 62% over 10 textures
(de Boissieu, F, C Godin, B Guilhamat, D David, C Serviere,
and D Baudois. 2009. “Tactile Texture Recognition with a
3-Axial Force MEMS Integrated Artificial Finger.” In Proc.
Robotics: Science and Systems, 49-56.), 89.9-94.6% over 10
textures (Giguere, P, and G Dudek. 2011. “A Simple Tactile
Probe for Surface Identification by Mobile Robots.” IEEE
Transactions on Robotics 27 (3): 534-544.), 95% over 20
textures (Sinapov, J, V Sukhoy, R Sahai, and A Stoytchev.
2011. “Vibrotactile Recognition and Categorization of Sur-
faces by a Humanoid Robot.” IEEE Transactions on Robot-
ics 27 (3): 488-497.), 97.6% over 3 textures (Oddo, C M, M
Controzzi, [ Beccai, C Cipriani, and M C Carrozza. 2011.
“Roughness Encoding for Discrimination of Surfaces in
Artificial Active-Touch.” IEEE Transactions on Robotics 27
(3): 522-533.), and 95% over 8 textures (Jamali, N, and C
Sammut. 2011. “Majority Voting: Material Classification by
Tactile Sensing Using Surface Texture.” IEEE Transactions
on Robotics 27 (3): 508-521.).
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Loeb et al., 2011, (Loeb, G E, G A Tsianos, J A Fishel, N
Wettels, and S Schaal. 2011. “Understanding Haptics by
Evolving Mechatronic Systems.” Progress in Brain
Research 192: 129-144.), suggested the general desirability
of selecting exploratory movements incrementally accord-
ing to the most likely identity of the object being explored
but, provided no examples or methods to do so.

SUMMARY

An object investigation and classification system may
include an object test system, a data storage system, and a
data processing system. The object test system may receive
a command to perform at least one action with a test object,
perform the at least one action with the test object, and return
test information indicative of at least one percept resulting
from the at least one action. The data storage system may
contain an experience database containing data indicative of
multiple classifications and, for each classification, at least
one action that was performed with at least one previously-
observed reference object having this classification, and at
least one percept value that is based in whole or in part on
the test information resulting from the at least one action.
The data processing system may: a) for each of multiple
different classifications, compute or receive an initial prior
probability that a test object falls within the classification; b)
determine at least one action that should be performed with
the test object to obtain at least one percept about the test
object that is likely to enable the classification of the test
object to be more accurately determined based on the initial
prior probabilities and the data within the experience data-
base; c) cause the object test system to perform the at least
one action with the test object; d) receive test information
from the object test system indicative of at least one percept
resulting from the at least one action with the test object; ¢)
compute at least one percept value; f) for each of multiple
different classifications, determine a posterior probability
that the test object falls within the classification based on the
initial prior probability, the at least one percept value, and
data within the experience database; g) determine whether
any of the posterior probabilities meets or exceeds a thresh-
old; h) if none of the posterior probabilities meet or exceed
the threshold, repeat b) through 1), substituting the posterior
probabilities determined in f) for the initial prior probabili-
ties in b); and/or i) when one or more of the posterior
probabilities meets or exceeds the threshold, output infor-
mation indicative of one or more of the classifications that
correspond to the one or more posterior probabilities that
meets or exceeds the threshold.

The data in the experience database may include data
indicative of a distribution of percept values for at least one
of the percepts resulting from an action that has been
performed multiple times in association with a given clas-
sification or a given previously observed reference object.

The threshold may not be the same during all of the
repetitions of g).

The data processing system may add data about at least
one of the percepts indicated by the received test informa-
tion to the experience database.

The data processing system may determine which of the
percepts indicated by the received test information should
have data about them added to the experience database
based on the degree to which the at least one action that led
to each percept caused a change in the probability that the
test object has one or more of the classifications.

The data processing system may determine if the percept
values of at least one percept resulting from the at least one
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action performed with the test object is substantially unlike
the percept values of the same at least one percept resulting
from the same at least one action associated with any of the
classifications described in the experience database.

The data processing system may add the percept values of
at least one percept resulting from the at least one action
with the test object to the experience database in association
with a new classification that was not in the experience
database when the data processing system determines that
the percept values of at least one percept resulting from at
least one action performed with the test object is substan-
tially unlike the percept values of the same at least one
percept resulting from the same at least one action associ-
ated with any of the classifications described in the experi-
ence database.

The data processing system may determine at least one
additional action to perform with the test object to obtain at
least one percept associated with the at least one additional
action and add the percept value of the at least one percept
resulting from the at least one additional action to the
experience database.

The initial prior probabilities may be the same.

The initial prior probabilities may be weighted based on
the number of times each classification has been associated
with a previously-observed reference object in the experi-
ence database.

The experience database may also contain data indicative
of a time when each percept was obtained. The initial prior
probabilities may be weighted based on the time each
percept was obtained.

The experience database may also contain data indicative
of a location where each percept was obtained. The initial
prior probabilities may be weighted based on the location
each percept was obtained.

The determines at least one action that should be per-
formed may include:

a) for each classification, computing a probability density
function that describes a distribution of percept values
expected for a percept resulting from an action that has been
performed multiple times in association with the classifica-
tion; b) computing a degree to which two different prob-
ability density functions for two different classifications
result in similar distributions of the percept values of the
same percept when performing the same action; ¢) multi-
plying the degree computed in b) by the prior probability
that the test object has each classification used to compute
the degree in b); d) repeating b and ¢ for all other possible
pairs of classifications; e) summing the results of all of the
multiplications in ¢); ) repeating a-e for each of the other
combinations of actions and percepts; and g) selecting the
action that yields the lowest summing value in e) for any
percept as the action to be performed.

The previously performed actions with the test object may
be given less preference in being re-selected as the action to
be performed if the previously performed action was unsuc-
cessful in producing percept values that help discriminate
between the most likely classifications.

The object test system may include at least one control-
lable actuator that performs the at least one action with the
test object, and at least one tactile sensor that interacts with
the test object and returns the test information indicative of
at least one percept resulting from the at least one action.

At least one action with the test object may include sliding
across a surface of the test object or contacting the test object
with a varying force.

The data processing system may process the test infor-
mation indicative of the at least one percept to indicate a

15

20

30

35

40

45

50

55

60

65

6

type of surface texture on the test object, a degree of
roughness or smoothness of the test object, a degree of
coarseness or fineness of the test object, a degree of hardness
or softness of the test object, a degree to which the test object
has a springiness or dampens; and/or a thermal property of
the test object.

A non-transitory, tangible, computer-readable storage
medium may contain a program of instructions that cause a
computer system running the program of instructions to
perform one, any sub-combination, or all of the functions of
the data processing system as described herein.

These, as well as other components, steps, features,
objects, benefits, and advantages, will now become clear
from a review of the following detailed description of
illustrative embodiments, the accompanying drawings, and
the claims.

BRIEF DESCRIPTION OF DRAWINGS

The drawings are of illustrative embodiments. They do
not illustrate all embodiments. Other embodiments may be
used in addition or instead. Details that may be apparent or
unnecessary may be omitted to save space or for more
effective illustration. Some embodiments may be practiced
with additional components or steps and/or without all of the
components or steps that are illustrated. When the same
numeral appears in different drawings, it refers to the same
or like components or steps.

FIG. 1 illustrates an example of an object investigation
and classification system that may have the ability to select
and perform one or more actions with a test object, resulting
in test information that may be indicative of one or more
percepts that may relate to one or more classifications of the
test object.

FIG. 2 illustrates an example of an algorithm that may be
capable of intelligently sequencing optimal actions to per-
form with a test object to identify efficiently its classifica-
tion.

FIG. 3A-3B illustrates an example of the object test
system illustrated in FIG. 1 that can explore tactile proper-
ties of a flat tactile surface. FIG. 3 A illustrates a side view;
FIG. 3B illustrates a front view.

FIG. 4 illustrates an example of the object test system
illustrated in FIG. 1 that can explore tactile properties of a
contoured tactile surface.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Tustrative embodiments are now described. Other
embodiments may be used in addition or instead. Details that
may be apparent or unnecessary may be omitted to save
space or for a more effective presentation. Some embodi-
ments may be practiced with additional components or steps
and/or without all of the components or steps that are
described.

The following definitions apply to both this specification
and the claims:

An ACTOR is a component that can interact with an
OBIJECT so as to cause it to generate information.

A SENSOR is a component that can detect or receive
information from an OBJECT.

An OBIJECT is any physical thing that is capable of
interacting with one or more ACTORS and producing infor-
mation that can be detected or received by one or more
SENSORS.
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A CLASSIFICATION is any descriptive attribute of an
OBJECT.

A CLASSIFICATION SET is a grouping of two or more
mutually exclusive CLASSIFICATIONS.

APERCEPT is an abstraction of information from the one
or more SENSORS when performing an ACTION that
reflects a characteristic of the OBJECT.

An ACTION is a particular interaction that an ACTOR
can perform with an OBJECT.

An EXPERIENCE DATABASE is a database that con-
tains data indicative of previously executed ACTIONS with
OBIECTS and PERCEPTS that result from the actions, as
well as and one or more CLASSIFICATIONS of each
OBJECT.

A PROBABILITY of a CLASSIFICATION of an
OBIJECT is a likelihood that the given OBJECT {falls within
the CLASSIFICATION. The PROBABILITY may be
expressed in any form, such as a number between zero and
one or a percentage.

A PROBABILITY DENSITY FUNCTION for a given
PERCEPT and a given ACTION with a given CLASSIFI-
CATION is the relative likelihood of the PERCEPT taking
on a given value when performing the ACTION with an
OBIJECT that is representative of the CLASSIFICATION.

APRIOR PROBABILITY of a CLASSIFICATION is the
PROBABILITY of the CLASSIFICATION computed prior
to performing an ACTION and abstracting a PERCEPT.

APOSTERIOR PROBABILITY of a CLASSIFICATION
is the PROBABILITY of the CLASSIFICATION computed
after performing an ACTION and abstracting a PERCEPT.

Various object investigation and classification systems for
investigating and determining one or more classifications of
an object are now described. An object investigation and
classification system may include a physical apparatus with
a tactile sensor to interact mechanically and to sense tactile
information from the object in order to determine its clas-
sifications by touch. The object investigation and classifi-
cation system may be capable of performing one or more
actions with an object and detecting or receiving sensory
information that may be computed to determine the value of
one or more percepts that correlate with one or more
classifications. The object investigation and classification
system may have the ability to perform a large number of
possible actions such that it may be impractical or time
consuming for the object investigation and classification
system to efficiently perform all of these actions before
attempting to resolve the one or more classifications of the
object. To efficiently sequence actions to perform in deter-
mining the classification(s) of an object within a single
classification set consisting of mutually exclusive classifi-
cations, the object investigation and classification system
may start with a set of initial prior probabilities describing
the various probabilities that an object possesses each of the
classifications in that classification set. The object investi-
gation and classification system may utilize an experience
database that may include records associating actions and
percept values from previously-observed reference objects
representative of various classifications in order to deter-
mine the optimal action that is expected to result in sensory
information and consequent percept values that would be
most likely to disambiguate between the most probable
classification(s) of the object. The object investigation and
classification system may decide to execute this optimal
action once it is determined and receive sensory information
that can be computed into one or more percept values. After
execution of this action and computation of these percept
values, the object investigation and classification system
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may combine the computed percept values and prior prob-
abilities with information in the experience database to
determine the posterior probabilities describing the updated
probabilities that an object possesses each of the classifica-
tions in the classification set given this new information. The
object investigation and classification system may iterate
this process of selecting optimal queries, substituting pos-
terior probabilities for prior probabilities until a desired
confidence in a single classification within the one or more
classification sets is reached.

An object may have one or more classifications corre-
sponding with one or more classification sets. A classifica-
tion may describe any descriptive attribute of the object,
such as a name reflecting its identity, a category of objects
which it is a part of, a feature that it possesses, or an
affordance (as defined by Gibson, J. J., 1977, “The Theory
of Affordances™ in Perceiving, Acting, and Knowing, eds.
Robert Shaw and John Bransford, ISBN 0-470-99014-7).
For instance, the object may be a piece of shirt fabric with
the following classifications: soft, fabric, cloth, flannel,
capable of being used as a filter, 140-count twill weave
double napped Canton flannel.

A classification may be applied to one or more objects. A
classification set contains two or more classifications that are
mutually exclusive. Classification from different classifica-
tion sets may or may not overlap with, be a subset or
superset of, be mutually exclusive with, or be mutually
inclusive with each other across more than one previously-
observed reference objects.

FIG. 1 illustrates an example of an object investigation
and classification system 100 that may have the ability to
select and perform one or more actions with a test object
120, resulting in test information that may be indicative of
one or more percepts that may relate to one or more
classifications of the test object 120. The object investigation
and classification system 100 may include an object test
system 102, a data storage system 103, and a data processing
system 101.

Referring to FIG. 1, the object test system 102 may
include one or more actors 130, one or more sensors 140,
and one or more feedback controllers 150. The object
investigation and classification system 100 may seek to
identify one or more classifications of the test object 120
corresponding to one or more classification sets by perform-
ing actions with the test object 120 using the one or more
actors 130 and computing percepts derived from information
received or detected by the one or more sensors 140.

Still referring to FIG. 1, the one or more actors 130 may
be mechanical actuators that can move a tactile sensor
capable of measuring tactile information from a surface that
it moves over. The mechanical actuators can be any com-
ponent designed to physically interact with the environment,
such as, but not limited to, linear stages or rotary stages and
related devices familiar to those skilled in the art of
mechanical systems. However, the one or more actors 130
may be any component of the object test system 102 capable
of interacting with the test object 120 to cause it to generate
information that can be detected by the one or more sensors
140. For example, an actor may be a computer screen
capable of displaying a question to a computer user who can
type in a response on a keyboard, a doctor capable of
measuring a patient’s temperature with a thermometer, or a
motorized dolly capable of moving a video camera around
a scene.

Still referring to FIG. 1, the one or more sensors 140 may
be physically attached to an actuator within the one or more
actors 130 to sense information about the physical interac-
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tion with the test object 120. The sensors may be capable of
measuring physical properties including, but not limited to,
forces, torques, vibrations, temperatures, acoustic emis-
sions, contact position, relative velocity, acceleration, con-
tact, humidity, magnetic flux, voltage, current, resistance,
capacitance, inductance, air flow, chemical content, altitude,
depth, light intensity, ultrasonic emissions, strain, proximity,
video, or any other type of sensor capable of measuring
physical properties which would be familiar to those skilled
in the art of sensor measurements. The one or more sensors
140 may be any component of the object test system 102
capable of detecting or receiving information from the test
object 120 when the test object 120 interacts with the one or
more actors 130. For the examples given in the paragraph
above, the one or more sensors 140 may be, respectively, a
keyboard capable of detecting various keystrokes typed by
a computer user when a computer screen displays a question,
a thermocouple inside of a thermometer capable of produc-
ing voltages that correspond to a patient’s temperature when
a doctor inserts the thermometer in the patient’s mouth, or
a video camera capable of measuring spatial and temporal
distributions of light intensity as it is moved around a scene.

Still referring to FIG. 1, the test object 120 may have a
surface with tactile properties that can be sensed. The one or
more sensors 140 may be tactile sensors capable of detecting
tactile information from a surface when it is moved over that
surface by mechanical actuators. The test object 120 may be
any physical thing capable of being interacted with by the
one or more actors 130 and producing information that can
be sensed or detected by the one or more sensors 140. For
the examples given in the paragraphs above, a test object
120 may be, respectively, a computer user capable of inter-
preting a question asked of them on a computer screen and
typing a response on a keyboard, a patient with a tempera-
ture that can be measured by a thermometer that a doctor
inserts into their mouth, or a scene that reflects light that can
be detected by a video camera that is being moved by a
motorized dolly.

Still referring to FIG. 1, the one or more feedback
controllers 150 may include a proportional-integral-deriva-
tive controller that uses information detected by the one or
more sensors 140 to control the one or more actors 130. The
one or more feedback controllers 150 may also include any
other type of controller designed to use feedback obtained
from the one or more sensors 140 to control the one or more
actors 130 using linear or non-linear methods as familiar to
those skilled in the arts of feedback control of mechanical
systems. For the example of a tactile sensor, the signals
generated by its interaction with test object 120 may depend
on the amount of force with which the one or more sensors
140 are applied to the test object 120. If the tactile sensor
provides information regarding that force, then that infor-
mation can be provided to the one or more feedback con-
trollers 150 to assure that the one or more actors 130 perform
the desired action with the desired force.

Still referring to FIG. 1, the data processing system 101
may be programmed to control the one or more actors 130
that may be capable of performing one or more actions to
interact with the test object 120 that may be external to the
object investigation and classification system 100. The one
or more sensors 140 may be capable of detecting or receiv-
ing information that results from this interaction between the
one or more actors 130 and the test object 120 and deliver
this information to the data processing system 101 which
can compute the value of one or more percepts describing
the test object 120. The classification of the test object 120
may be initially unknown to the data processing system 101,
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which may seek to determine this classification by selecting
actions to be performed by the one or more actors 130 of the
object test system 102 and receiving sensory data from the
one or more sensors 140 of the object test system 102.

Still referring to FIG. 1, the data processing system 101
may be programmed to select between one or more actions
that the one or more actors 130 can perform with the test
object 120. If the one or more actors 130 are mechanical
actuators, the actions may be a predefined sequence of force,
velocity or position, or any combination of these. The
actions may be any particular action that the one or more
actors 130 can perform with the test object 120. Referring
again to the examples given in the above paragraphs, the
actions may be, respectively, presenting a question to a
computer user via a computer display screen, the act of
measuring a patient’s temperature performed by a doctor, or
a particular movement made by a motorized dolly attached
to a video camera.

Still referring to FIG. 1, the sensory information received
by the one or more sensors 140 may be used by the data
processing system 101 to compute the value of one or more
of percepts that result from interactions between the one or
more actors 130 and the test object 120. If the one or more
sensors 140 include a tactile sensor capable of detecting
tactile information from a surface when it is moved over that
surface by the one or more actors 130, then the percepts may
be tactile properties such as the roughness of the surface
computed from the power of measured vibrations. The
percepts may be any particular abstraction of signals or other
information from the one or more sensors 140 that reflect a
characteristic of an object. Referring again to the examples
given in the above paragraphs, the percepts may be, respec-
tively, the response computed from a sequence of keystrokes
typed into a keyboard by a computer user, the temperature
computed from the voltages produced by a thermocouple
inside a thermometer, or an abstraction of an object shape
computed from spatial and temporal distributions of light
sensed by a video camera.

The object investigation and classification system 100
may be able to perform a large number of actions with its
one or more actors 130 and to abstracting a large number of
percepts derived from information detected or received by
the one or more sensors 140 during such actions. Executing
all of these actions may be too numerous, impractical, or
time-consuming for the object investigation and classifica-
tion system 100 to perform before identifying the one or
more classifications of the test object 120. The data pro-
cessing system 101 may intelligently sequence the actions to
be performed by the one or more actors 130 to determine
efficiently the one or more classifications of the test object
120 that the object investigation and classification system
100 seeks to identify.

Still referring to FIG. 1, the data processing system 101
may contain an experience database 113 that contains data
such as records associating previously executed actions with
previously computed percept values. The previously
executed actions may be performed by the one or more
actors 130 with previously-observed reference objects. The
resulting value(s) of one or more percepts may be abstracted
from signals obtained from the one or more sensors 140
during this interaction. The records of the experience data-
base 113 may be labeled with one or more classifications
from one or more classification sets for the previously-
observed reference objects. The data in the experience
database may also contain additional information including,
but not limited to, timestamps relating to when the action
was performed and other relevant environmental data such
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as ambient temperature, humidity, or the location of where
the action was performed. The experience database 113 may
also simplify these data into descriptive statistics that
describe a group of the actions and/or percepts of a given
classification, a given previously-observed reference object,
or a given encounter with a previously-observed reference
object, including, but not limited to, mean, mode, standard
deviation, variance, kurtosis, skewness, standard error of the
mean, number of entities observed, probability density func-
tions, cumulative distribution functions, probability mass
functions, histograms, and other descriptive statistics that
are familiar to those skilled in the art of descriptive statistics.

FIG. 2 illustrates an example of an algorithm that may be
capable of intelligently sequencing optimal actions to per-
form with the test object 120 to identify efficiently its
classification. The algorithm may use initial prior probabili-
ties 211, an action selector 212, the experience database 113,
a percept calculator 216, a posterior estimator 214, a con-
vergence calculator 215, one or more actors 130, and/or the
one or more sensors 140.

Referring to FIG. 2, the algorithm may intelligently select
optimal actions for the one or more actors 130 to perform
with the test object 120 with an initially unknown classifi-
cation in a given classification set, such that the percepts
abstracted from the information detected or received by the
one or more sensors 140 best disambiguates among likely
classifications of the test object 120 in the given classifica-
tion set, as described in more detail below.

The algorithm may be implemented by the data process-
ing system 101.

Still referring to FIG. 2, the algorithm may start with a set
of initial prior probabilities 211 that reflect the prior prob-
abilities expected of all possible classifications within a
classification set for the test object 120. The possible clas-
sifications within a classification set used in the initial prior
probabilities 211 may include all of the previously encoun-
tered classifications within that classification set as stored in
the experience database 113. The initial prior probabilities
211 may be computed such that they are uniformly distrib-
uted among all previously experienced object classifications
for a given classification set that are stored in the experience
database 113. The initial prior probabilities 211 may be
computed such that they are weighted based on the relative
number of times an object has been encountered with a given
classification within a classification set as derived from
information stored in the experience database 113. The
initial prior probabilities 211 may be computed such that
they are weighted based on the relative number of times an
object has been encountered with a given classification
within a classification set over a specified period of time as
derived from data stored in the experience database 113. The
initial prior probabilities 211 may be computed such that
they are weighted based on the number of times and recency
an object has been encountered with a given classification
within a classification as derived from information stored in
the experience database 113. The initial prior probabilities
211 may be computed such that they are weighted based on
the relative number of times an object has been encountered
with a given classification within a classification set in the
current location that the object investigation and classifica-
tion system 100 is exploring the test object 120 as derived
from information stored in the experience database. The
initial prior probabilities 211 may alternatively be set by an
external system and may be based on information for which
the object investigation and classification system 100 may
have no available sensors.
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Still referring to FIG. 2, the initial prior probabilities 211
may be passed to the action selector 212. The action selector
may utilize information in the experience database 113 to
determine which action to be performed by the one or more
actors 130 is anticipated to yield a percept value that is most
likely to disambiguate among the most likely classifications
of the test object 120, as described by the initial prior
probabilities 211. To accomplish this, the action selector 212
may utilize data in the experience database 113 to estimate
a probability density function that reflects the relative like-
lihood of obtaining a percept value when performing a given
action with the test object 120, if that test object 120 were
to have a given classification. The probability density func-
tion for a given percept when performing a given action on
an object with a given classification may be assumed to have
a normal distribution, binomial distribution, uniform distri-
bution over a specified range, Cauchy distribution, chi-
square distribution, F distribution, t distribution, lognormal
distribution, exponential distribution, gamma distribution,
binomial distribution, Poisson distribution, bimodal distri-
bution, or any other distribution as familiar to those skilled
in the art of probability distributions. The information in the
experience database 113 may be used to determine a suitable
probability density function as familiar to those skilled in the
art of curve fitting. The probability density function for a
given percept when performing a given action with the test
object 120 with a given classification can be computed using
data in the experience database of previous values of the
percept obtained when performing the given action on all
previously-observed reference objects known to be mem-
bers of the given classification. For instance, if the distri-
bution is assumed to be normal, the probability density
function can be computed based on the mean and standard
deviation of said previous values using methods familiar to
those skilled in the art of probability distributions. The
probability density function may also be computed based on
normalized histograms representative of actual data con-
tained within the experience database 113. The information
used in the experience database 113 to compute the prob-
ability distribution may be all records of the specified
percept obtained when performing the given action on all
previously-observed reference objects with the given clas-
sification. The information used in the experience database
113 to compute this probability distribution may give pref-
erential weighting to records that have occurred over a
specified period of time, have occurred recently, have
occurred in a specified location, or some other subset of
records of the specified percept obtained when performing
the given action on all previously-observed reference objects
with the given classification. Once the probability density
functions have been computed for each possible combina-
tion of actions, percepts and classifications, the action selec-
tor 212 may further compute the degree of overlap between
two probability density functions derived from two different
pairs of mutually exclusive classifications within a classifi-
cation set for a given percept and action. The degree of
overlap between these two probability density functions
could be computed by analyzing the intersecting regions of
the two probability density functions, multiplying the two
probability density functions, multiplying then taking the
square root of the two probability density functions, or any
other method to determine the amount of overlap between
two different probability density functions familiar to those
skilled in the art of probability distributions. The degree of
overlap between any two classifications within a classifica-
tion set may be weighted by the prior probabilities of both
classifications to determine the anticipated ambiguity of a
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percept between two classifications. The resulting terms
could be summed across all possible pairings of classifica-
tions within a classification set for a given percept and a
given action to determine the total anticipated ambiguity for
that given percept and that given action. The action selector
212 could then select the action to perform and one or more
of the resulting percepts to abstract based on the action and
percepts that have the lowest value of total anticipated
ambiguity. An exemplary set of equations for performing
this computation for probability density functions that are
normally distributed is provided in the box below.
Referring to the box below, a, is a given action, p; is a
given percept that can be computed from sensory informa-
tion obtained from performing the action a,, c,, is a given
classification, X, P is the mean value of percept p; obtained
when performing action a, on all previously-observed ref-
erence objects in the experience database with the classifi-
cation c,,, O, P is the standard deviation of percept p,
obtained When perforrning action a, on all previously- ob-
served reference objects in the experience database 113 with
the classification c,,, PDF,, ot (x) is the probability density
function that reﬂects the relative likelihood of obtaining
percept value x for percept p; when performing action a, on
objects with classification c,, based on previously-observed
reference objects in the experience database 113, DO, P
is the degree of overlap for percept p, between cla551ﬁcat10n
¢,, and classification ¢, when performing action a, based on
preViously-observed reference objects in the experience
database 113, P(c,,) and P(c,) are the respective prior
probabilities of classification c,, and classification c,
AA, .. 1s the anticipated ambiguity of percept p, between
classnication ¢, and classification ¢, when perforrning
action a, based on preViously-observed reference objects in
the experience database 113 and the prior probabilities P(c,,)
and P(c,), TAA, 2 is the total anticipated ambiguity of
percept p, when performing action a, based on previously-
observed reference objects in the experience database 113
and the prior probabilities, OAP is the optimal action and
percept to best disambiguate between the most likely prior
probabilities based on previously-observed reference objects
in the experience database 113 and the prior probabilities.

given mean (fa;,pj,cm) and st dev (U'a;,pj,cm) 9]
compute probability density function 2)
- 2
L )
PDFypp o (0) ¢ e P
P jsCm o2
N “G.p jom
compute degree of overlap 3)
Doaivpjwm,n = PDFg, P jrCm PDFa;vpijn
given prior probability P(c,,) for all m 4)
compute anticipated ambiguity 5)
A cmn = DOy PEmIP(Cr)
compute total anticipated ambiguity 6)
determine optimal action and percept D
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Still referring to FIG. 2, the one or more actors 130 may
perform the action selected by the action selector 212 with
the test object 120. The one or more sensors 140 may detect
or receive information from the test object 120 when per-
forming this action and pass this information on to the
percept calculator 216 that may compute one or more
percept values that describe a property of the test object 120,
specific examples are provided below. The one or more
sensors 140 may also deliver detected or received informa-
tion to the one or more feedback controllers 150 to control
the one or more actors 130 as described above.

Still referring to FIG. 2, the percept calculator 216 may
pass the one or more calculated percept values on to the
posterior estimator 214, which may use this information to
compute the posterior probabilities that the test object 120
may be of a given classification in a classification set. The
posterior estimator 214 may use statistical inference tech-
niques to compute the posterior probabilities using the one
or more computed percept values from the percept calculator
216, probability density functions that describe the relative
likelihood of obtaining each value of a percept when per-
forming a given action with an object that is representative
of a given classification in a classification set as computed
above, and prior probabilities, using methods such as, but
not limited to, Bayesian inference or other statistical infer-
ence techniques as familiar to those skilled in the art of
statistical inference.

Still referring to FIG. 2, the posterior probabilities com-
puted by the posterior estimator 214 may be analyzed by the
convergence calculator 215 to determine if any classification
within a classification set has reached a probability that
exceeds a given threshold. If this threshold has not been met,
the process can be iterated by substituting the computed
posterior probabilities from the posterior estimator 214 into
the prior probabilities used to compute the optimal action by
the action selector 212 and repeating the above sequence
until the convergence calculator 215 has determined that at
least one classification within a classification set has reached
a probability that meets or exceeds a given threshold. If only
one classification within a classification set has reached a
probability that meets or exceeds a given threshold, that
classification may be selected as the classification of the test
object 120. If more than one classification within a classi-
fication set has reached a probability that meets or exceeds
a given threshold, the classification with the highest thresh-
old may be selected as the classification of the test object
120. Alternatively, if more than one classification within a
classification set has reached a probability that meets or
exceeds a given threshold, the classifications may be
selected as the multiple satisfactory classifications of the
object. The threshold used by the convergence calculator
215 may be a fixed value through all iterations, or it may
change between iterations, including, but not limited to
starting out initially high in the first iteration, but decreasing
as more iterations are performed to avoid both quickly
making an incorrect conclusion or indefinitely performing a
large number of actions without ever meeting this threshold.

Still referring to FIG. 2, after the convergence calculator
215 has determined the classification of the test object 120,
the one or more actions conducted by the one or more actors
130 and the associated percept values computed by the
percept calculator 216 may be added to the experience
database 113 along with the classification of the test object
120, as determined by the convergence calculator 215. The
data processing system 101 may add all of the actions and
resulting percept values obtained through this experience to
the experience database 113, or only those that were found
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to be useful in identifying the classification that was
selected. The actions and percepts to be labeled useful in
identifying the classification that was selected may be found
by analyzing the change between the prior probability and
the posterior probability of the classification that was
selected, as calculated by the posterior estimator 214. A
combination of an action and percept that resulted in a
substantial change between the prior probability and the
posterior probability in the classification that was selected
may be labeled useful. A substantial change may be defined
as an increase meeting or exceeding a predetermined thresh-
old, or an increase or decrease meeting or exceeding a
predetermined threshold. This process may enable the expe-
rience database 113 to contain greater amounts of data for
actions and percepts that have proven to be useful in
determining the classification of an object, enabling it to
perform more efficiently in future classifications of objects.

The above algorithm describes a method that may be
capable of intelligently sequencing actions to identify effi-
ciently a single classification within a classification set.
Various approaches may be taken to solve for two or more
classifications within two or more corresponding classifica-
tion sets. One approach may be to set the initial prior
probabilities 211 for the two or more classifications within
the two or more classification sets, then use the above
described algorithm to select the optimal actions to identify
the classification within the first classification set while also
using the posterior estimator 214 to update the probabilities
of the other classifications within the other classification sets
with these selected actions and resulting percept values.
Upon converging on a classification within the first classi-
fication set, the process may be repeated for the remaining
classifications to be identified in the remaining classification
sets. Another variation to the approach above may be to
select the optimal action to identify the classification within
the classification set that has the highest probability that has
yet to exceed the threshold across all possible classifications
across all classification sets seeking to be identified. Another
approach may be to converge the two or more classification
sets into a single classification set by combining all possible
combinations of each classification between all classifica-
tion sets seeking to be identified. For instance, if one
classification set contained the three mutually exclusive
colors red, green and blue and another classification set
contained the two mutually exclusive shapes circle and
square, the new classification set would contain 6 mutually
exclusive merged classifications: red-circle, red-square,
green-circle, green-square, blue-circle, and blue-square.
This merged set may be treated as a single classification set;
however, depending on the relationships between classifi-
cations within the classification sets, some of these com-
bined classifications may be mutually exclusive. Instead, the
new classification set may consist of all observed instances
of possible combinations of each classification between all
classification sets seeking to be identified.

The algorithm for investigating and determining the clas-
sification of an object that may be implemented by the data
processing system 101 may benefit from an experience
database 113 that contains a large amount of previous
experience describing the values of one or more percepts
that arise from actions that are useful for disambiguating
possible classifications within a classification set. Because
the useful actions and percepts for disambiguating possible
classifications within a classification set may not be known
prior to collecting this previous experience, the object inves-
tigation and classification system 100 could be initially
programmed to perform a small number of repetitions over
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many possible candidate actions with the test object 120 and
compute values of one or more percepts for each candidate
action to be stored in the experience database 113 to gain an
initial set of information describing previously-observed
reference objects. Through executing the above-described
algorithm in future encounters and adding experiences of
actions and percepts determined to be useful in disambigu-
ating possible classifications of a test object 120 within a
classification set, the experience database 113 may auto-
matically acquire a larger amount of experience in a smaller
set of actions and percepts found to be useful.

Estimating probability density functions of a given per-
cept for a given action for a given classification from a
limited amount of information in the experience database
113 may result in errors between the estimated probability
density function and the true probability density function of
that percept for a given action and given classification. If the
previous experience in the experience database 113 is lim-
ited, these errors may become more severe when the pos-
terior estimator 214 attempts to compute the posterior prob-
abilities based on more than one percept at a time. This
phenomenon is known as the curse of dimensionality (Jain,
A K, R P W Duin, and J. Mao. 2000. “Statistical Pattern
Recognition: a Review.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (1): 4-37.) and is
familiar to those skilled in the arts of statistical pattern
recognition. To circumvent this, the posterior estimator 214
may initially analyze only a single percept for a given action
when computing posterior probabilities, considering only
the optimal percept as determined by the action selector 212,
and then gradually increase the number of percepts to
contribute to the computation of the posterior probabilities
by the posterior estimator 214 as more experience is
obtained in the experience database 113. All percepts
obtained when conducting an action, including those that
may not be used by the above algorithm, may still be added
to the experience database 113 after a classification is
identified by the convergence calculator 215.

The total anticipated ambiguity for a given percept and a
given action as computed by the action selector 212 could
consider the number of times the given action and resulting
percept has been performed on the test object 120 that the
object investigation and classification system 100 is cur-
rently investigating and use this information to provide a
more accurate prediction of the total anticipated ambiguity.
For instance, if the action selector 212 suggests a particular
action and percept to be optimal based on information
contained in the experience database 113 and current prior
probabilities, yet the object investigation and classification
system 100 has previously performed this action and com-
puted a value for this percept on the test object 120 that it is
currently investigating without yielding useful information
to disambiguate likely classifications of the object, this
information may indicate that the total anticipated ambiguity
as computed by the action selector should be higher. To
accomplish this the total anticipated ambiguity as computed
by the action selector could include a penalty factor based on
the number of times the given action has been repeated, such
as, but not limited to, raising the total anticipated ambiguity
to a power that becomes greater than one according to the
number of times this has occurred without producing sig-
nificant changes in the posterior probabilities. This may
serve to encourage the action selector 212 to select new
actions if the selected actions are not helping the object
investigation and classification system 100 converge on a
given classification.
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To avoid the need for supervised learning to label clas-
sifications, the data processing system 101 may be pro-
grammed create new classifications based on the distribu-
tions of actions and percepts in the experience database 113.
The data processing system 101 may be programmed to use
cluster analysis to identify if the distribution of percepts
computed while performing actions with a test object 120
are likely to correspond to previously-experienced objects of
one or more existing classifications or if they are more likely
to represent one or more novel classifications. If the latter,
then the data processing system 101 may add one or more
new classifications to the experience database 113, with each
such new classification containing the previously experi-
enced actions and percepts (or a statistical summary thereof)
that are most closely associated with the new one or more
classifications using methods familiar to those skilled in the
art of cluster analysis and unsupervised learning. Prior to or
after adding the one or more new classifications to the
experience database 113, the data processing system 101
may also perform one or more additional actions and obtain
one or more percepts resulting from each action and add this
information to the experience database 113 to obtain addi-
tional information on the new classification.

A prior probability or a posterior probability for a given
classification may be a number between zero and one
corresponding to the likelihood that the test object 120
possesses the given classification or it may be any other
value on any scale that correlates with the likelihood that the
test object 120 possesses the given classification.

FIG. 3A-3B illustrates an example of the object test
system 102 illustrated in FIG. 1 that can explore tactile
properties of a test object, such as a flat tactile surface 320.
The object test system 102 may include a base 335, a gantry
336, a mechanical adapter 337, one or more linear actuators
330, and a tactile sensor 340. FIG. 3A is a side view. FIG.
3B is a front view.

The one or more linear actuators 330 may be capable of
moving the tactile sensor 340 to perform actions that are
similar to the movements humans make when exploring
objects by touch. The tactile sensor 340 may have sensory
capabilities, sensitivity, resolution, and mechanical proper-
ties and may interact with objects being explored in ways
that are similar to those of human fingertips. The one or
more feedback controllers 150 may make use of information
from the tactile sensor 340 or from multiple tactile sensors
instrumented on the one or more linear actuators 330 to
control exploratory movement. Signal processing algo-
rithms may measure percepts that correspond to the linguis-
tic descriptions of percepts observed by humans when
identifying tactile properties of objects. The experience
database 113 may be used and may include previous expe-
rience exploring similar objects and may include and asso-
ciate descriptors of each exploratory movement with lin-
guistic measurements of object properties. A biologically
inspired decision making process may be employed for
determining an optimal next exploratory movement to make.
The object test system 102 may apply these tactile explo-
ration, measurement and perception technologies in quality
control, product design, and in other fields.

Still referring to FIG. 3A, the gantry 336 may be attached
to the base 335 to hold the one or more linear actuators 330.
The one or more linear actuators 330 may be coupled
together with the mechanical adapter 337 that position the
tactile sensor 340 over the tactile surface 320. The gantry
336, base 335, and the mechanical adapter 337 may be made
of any engineering materials suitable as structural materials,
including, but not limited to, metals, plastics, ceramics, or
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any other materials familiar to those skilled in the art of
engineering design. The base 335 may have a high mass to
dampen vibrations from external sources. The one or more
linear actuators 330 may be any type of device capable of
creating movement, such as movement in a straight line,
such as hydraulic actuators, pneumatic actuators, piezoelec-
tric actuators, electro-mechanical actuators, or any other
type of actuator capable of creating motion in a straight line
as familiar to those skilled in the art of actuation. The one or
more linear actuators 330 may be programmed to move the
tactile sensor 340 over the tactile surface 320 with a move-
ment profile that resembles the types of exploratory move-
ments humans typically make. These exploratory move-
ments may be similar to the movements humans make when
exploring objects by touch and may include, but are not
limited to, pressing the tactile sensor 340 into the tactile
surface 320 with a predetermined profile of force, velocity,
displacement, or combination of force, velocity, and dis-
placement; or sliding the tactile sensor 340 over the tactile
surface 320 with a predetermined trajectory of velocities in
one or more directions. Any of the above movements may
use sensory data from the tactile sensor 340 to control force,
displacement or velocity as described below.

The tactile sensor 340 may have sensory capabilities,
sensitivity, resolution, and mechanical properties and may
interact with objects being explored similar to those of a
human fingertip. The tactile sensor 340 may be the BioTac
(made by SynTouch LLC, Los Angeles, Calif.). The ability
of' the tactile sensor 340 to produce interactions between the
tactile surface 320 that are similar to those that would be
produced when interacting with a human fingertip may
benefit from the tactile sensor 340 having similar mechani-
cal properties as the human fingertip, such as similar com-
pliance, shape, and size. The tactile sensor 340 may also or
instead have similar features as the human fingertip, such as
a fingernail that facilitates the transduction of shear forces
applied to the fingerpad, and fingerprints that enhance vibra-
tions sensed when sliding the tactile sensor 340 over a
textured surface. The ability of the tactile sensor 340 to
perceive sensations similar to those a human may perceive
when exploring the tactile surface 320 may benefit from the
tactile sensor 340 having sensory modalities similar to those
found in human skin, such as sensitivity to contact location,
normal and shear forces, vibrations, and/or temperature.

The one or more feedback controllers 150 that make use
of information from the tactile sensor 340 or sensors instru-
mented on the one or more linear actuators 330 to control
exploratory movements may include the ability to control
the specified force of the one or more linear actuators 330 in
the normal axis. The specified force in the one or more linear
actuators 330 in the normal axis may be controlled using the
one or more feedback controllers 150 that may make use of
sensory information from the tactile sensor 340 or other
sensors instrumented on the one or more linear actuators 330
in the normal axis, such as force plates, motor current
sensors, strain gages, or other technologies familiar to those
skilled in the art of force measurement. The tactile sensor
340 may be a fluid-filled tactile sensor capable of sensing
fluid pressure. The fluid pressure in the tactile sensor 340
may be used to stabilize contact force by adjusting the
position of the one or more linear actuators 330 in the
normal axis by means of a feedback controller that maintains
the fluid pressure reading at a constant value.

The signal processing strategies for the measurement of
percepts that correspond to the linguistic descriptions of
percepts observed by humans when identifying tactile prop-
erties of objects may be computed from the sensory infor-
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mation obtained from the tactile sensor 340 and/or from
other sensors contained in the one or more linear actuators
330, such as position encoders, strain gages, motor current
sensors, force plates, or other technologies familiar to those
skilled in the art of actuation. Examples of linguistic descrip-
tions of percepts observed by humans have been observed in
prior art and may include, but are not limited to: properties
relating to surface texture including, but not limited, to
roughness, coarseness, slipperiness, or regularity; properties
relating to compliance, including, but not limited to, hard-
ness or springiness; and/or properties relating to thermal
properties, including, but not limited to thermal effusivity,
thermal conductivity, and heat capacity. The percept of
texture roughness may be computed by analyzing the loga-
rithm of the variance of vibrations measured by the tactile
sensor 340 when sliding over a surface. The percept of
texture coarseness can be computed by transforming the
vibrations measured by the tactile sensor 340 into the
frequency domain with a fast Fourier transform and multi-
plying the power of the individual frequency bins by their
respective frequency and summing all respective terms, then
dividing the result by the total power of all frequency bins,
and taking the logarithm of the result. The percept of texture
slipperiness can be computed from the inverse of the tan-
gential load of the actuator when sliding at a specified
contact force. The percept of texture regularity can be
computed from the diffusivity of the spectral content in the
Fourier transform when the tactile sensor 340 slides over a
tactile surface. The percept of hardness can be computed as
the inverse of mechanical compliance, which may be deter-
mined by measuring the displacement of the tactile sensor
340 as the force between the tactile sensor 340 and the test
object 120 is changed by the one or more linear actuators
330. The percept of thermal effusivity can be computed from
the measurement of temperature over time in the tactile
sensor 340 that is heated above ambient temperature. Other
signal processing strategies, such as those described in (Lin,
C H, T W Erickson, J A Fishel, undefined author, N Wettels,
and G E Loeb. 2009. “Signal Processing and Fabrication of
a Biomimetic Tactile Sensor Array with Thermal, Force and
Microvibration Modalities.” In Proc. IEEE International
Conference on Robotics and Biomimetics, 129-134.; Su, Z,
J A Fishel, T Yamamoto, and G E Loeb. 2012. “Use of
Tactile Feedback to Control Exploratory Movements to
Characterize Object Compliance.” Frontiers in Neurorobot-
ics 6(7): 1-12.; Fishel, J A, and G E Loeb. 2012. “Bayesian
Exploration for Intelligent Identification of Textures.” Fron-
tiers in Neurorobotics 6(4): 1-20.; Chu, V, I McMahon, L
Riano, C G McDonald, Q He, ] M Perez-Tejada, M Arrigo,
etal. 2013. “Using Robotic Exploratory Procedures to Learn
the Meaning of Haptic Adjectives.” In Proc. IEEE Interna-
tional Conference on Robotics and Automation.) for char-
acterizing tactile properties of texture, compliance and ther-
mal properties may also be used.

The one or more linear actuators 330 may be precision
components designed to produce smooth motions with high
accuracy and repeatability with low mechanical vibration
such that the variability and noise of the one or more linear
actuators 330 produce variability of percept values that is
similar to those that would be computed if the linear
actuators were not moving. Such precision components may
include, but are not limited to, actuators with precision cross
roller bearings, actuators with air bearings, actuators with
hydraulic cylinders and other actuators and mechanical
linkages familiar to those skilled in the art of mechatronic
design. The fidelity of sensor information collected from the
tactile sensor 340 may benefit from the low background
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noise levels produced from such precision components as
discussed below. An example of a suitable linear actuator
may include the ANT95-75-L. (Aerotech, Pittsburg, Pa.) or
other similar product families. The apparatus may have two
linear actuators 330, one to control the movement in the
direction normal to the tactile surface 320 and another to
control the movement in the direction tangential to the
tactile surface 320. However, the actuators need not be linear
and alternative technologies such as rotary actuators may be
used as familiar to those skilled in the art of mechatronic
design.

The above described object investigation and classifica-
tion system 100 incorporating the tactile sensor 340 and
linear actuators 330 was used in an experiment to test its
ability to identify a single texture within a set of 117
different textures. (Fishel, J A, and G E Loeb. 2012. “Bayes-
ian Exploration for Intelligent Identification of Textures.”
Frontiers in Neurorobotics 6(4): 1-20.). The data processing
system 101 was programmed to control the one or more
linear actuators 330 to produce three different actions that
consisted of sliding motions at different contact forces and
velocities (0.20N contact force, 6.31 cny/s sliding velocity;
0.5N contact force, 2.51 cm/s sliding velocity; and 1.26N
contact force, 1 cm/s sliding velocity). The data processing
system 101 was programmed to receive test information
from the tactile sensor 340 and additional sensors within the
one or more linear actuators 330 and to compute the fol-
lowing three percepts from each action: i) the percept of
texture roughness, which was computed by analyzing the
logarithm of the variance of vibrations measured by the
tactile sensor 340 when sliding over a surface; ii) the percept
of texture coarseness, which was computed by transforming
the vibrations measured by the tactile sensor 340 into the
frequency domain with a fast Fourier transform and multi-
plying the power of the individual frequency bins by their
respective frequency and summing all respective terms, then
dividing the result by the total power of all frequency bins,
and taking the logarithm of the result; and iii) the percept of
texture slipperiness, which was computed from the inverse
of the tangential load on the actuator when sliding at the
specified contact force. Using the algorithm described
above, the object investigation and classification system 100
obtained 95.4% accuracy over 117 textures, 99.6% accuracy
discriminating between pairs of nearly identical textures (in
comparison, human subjects were only able to obtain 81.3%
performance in discriminating these pairs of nearly identical
textures), and 100% performance over 10 textures intention-
ally selected due to their dissimilarity. In comparison, other
methods were found to have only marginal performance
accuracies when using a small number of highly distinctive
surfaces that would be trivial to discriminate for a human
observer or for the object investigation and classification
system 100. Examples of classification performance in pre-
vious literature include: 62% over 10 textures (de Boissieu,
F, C Godin, B Guilhamat, D David, C Serviere, and D
Baudois. 2009. “Tactile Texture Recognition with a 3-Axial
Force MEMS Integrated Artificial Finger.” In Proc. Robot-
ics: Science and Systems, 49-56.), 89.9-94.6% over 10
textures (Giguere, P, and G Dudek. 2011. “A Simple Tactile
Probe for Surface Identification by Mobile Robots.” IEEE
Transactions on Robotics 27 (3): 534-544.), 95% over 20
textures (Sinapov, J, V Sukhoy, R Sahai, and A Stoytchev.
2011. “Vibrotactile Recognition and Categorization of Sur-
faces by a Humanoid Robot.” IEEE Transactions on Robot-
ics 27 (3): 488-497.), 97.6% over 3 textures (Oddo, C M, M
Controzzi, [ Beccai, C Cipriani, and M C Carrozza. 2011.
“Roughness Encoding for Discrimination of Surfaces in
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Artificial Active-Touch.” IEEE Transactions on Robotics 27
(3): 522-533.), and 95% over 8 textures (Jamali, N, and C
Sammut. 2011. “Majority Voting: Material Classification by
Tactile Sensing Using Surface Texture.” IEEE Transactions
on Robotics 27 (3): 508-521.).

These tactile exploration, measurement, and perception
technologies may be used in quality control and product
design and in other fields. The above described system that
seeks to mimic biological processes for identifying the
classification of an object based on its tactile properties may
be used to provide quantitative measures of human tactile
perception. The object investigation and classification sys-
tem 100 may be used in product development applications to
determine if one product has a similar feel to another
product. In order to determine the attribute of a particular
feel, the object investigation and classification system 100
may acquire an experience database that is organized
according to classifications reflecting various possible feels.
Such an experience database may be accumulated by per-
forming various actions and recording the resulting percept
values obtained with reference objects already classified
according to the various possible feels by humans who may
have experience in making such classifications. Design and
manufacturing industries for garments, paper goods, con-
sumer electronics, cosmetics, skin and hair care products,
prepared foods, and other products commonly employ
humans with expertise in classifying objects and materials
according to feel. Classification according to feel may be
useful when designing a product that seeks to mimic the feel
of another product, or restore the feel of an object that has
been damaged using various surface treatments. The above
described object investigation and classification system 100
may also be useful for determining which combinations of
classifications have desirable or undesirable traits that can be
identified in consumer preference studies. The above
described system may also be useful in applications of
quality control.

Referring to FIG. 3B, an additional linear actuator 330
may run along the length of the gantry 336. This actuator
may permit a single tactile sensor to be repositioned to
explore multiple tactile surfaces. The ability to rapidly
change between multiple tactile surfaces may improve the
output of classification system 100 when characterizing a
large number of objects. This may also benefit from the use
of guides to assist the operator with the placement and
orientation of the surface in the exploratory range of the
machine which may be, but not limited to, laser-generated
guides or other indexing tools as familiar to those skilled in
the art of industrial equipment design. The ability to change
rapidly between multiple tactile surfaces may facilitate
comparison between a standardized tactile surface 320 that
remains in place as a reference.

FIG. 4 illustrates an example of an object test system that
can explore tactile properties of a contoured tactile surface
420. The object test system may have the base 335, the
gantry 336, the one or more linear actuators 330, one or
more rotary actuators 430, and the tactile sensor 340.

Referring to FIG. 4, the one or more rotary actuators 430
may be used to align the tactile sensor 340 so that it is
normal to the contoured tactile surface 420. Information
from four electrodes in the tip of a BioTac, for example, may
be delivered to the one or more feedback controllers 150 to
control the orientation of the BioTac with respect to the
contoured tactile surface 420, as described by (Su, Z, J A
Fishel, T Yamamoto, and G E Loeb. 2012. “Use of Tactile
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Feedback to Control Exploratory Movements to Character-
ize Object Compliance.” Frontiers in Neurorobotics 6(7):
1-12.).

Unless otherwise indicated, the data processing system
101, the object test system 102, and the data storage system
103 may each be implemented with the same or a different
computer system configured to perform the functions that
have been described herein for the component. Each com-
puter system may include one or more processors, tangible
memories (e.g., random access memories (RAMs), read-
only memories (ROMs), and/or programmable read only
memories (PROMYS)), tangible storage devices (e.g., hard
disk drives, CD/DVD drives, and/or flash memories), sys-
tem buses, video processing components, network commu-
nication components, input/output ports, and/or user inter-
face devices (e.g., keyboards, pointing devices, displays,
microphones, sound reproduction systems, and/or touch
screens).

Each computer system may include one or more comput-
ers at the same or different locations. When at different
locations, the computers may be configured to communicate
with one another through a wired and/or wireless network
communication system.

Each computer system may include software (e.g., one or
more operating systems, device drivers, application pro-
grams, and/or communication programs). When software is
included, the software includes programming instructions
and may include associated data and libraries. When
included, the programming instructions are configured to
implement one or more algorithms that implement one or
more of the functions of the computer system, as recited
herein. The description of each function that is performed by
each computer system also constitutes a description of the
algorithm(s) that performs that function.

The software may be stored on or in one or more
non-transitory, tangible storage devices, such as one or more
hard disk drives, CDs, DVDs, and/or flash memories. The
software may be in source code and/or object code format.
Associated data may be stored in any type of volatile and/or
non-volatile memory. The software may be loaded into a
non-transitory memory and executed by one or more pro-
Cessors.

The components, steps, features, objects, benefits, and
advantages that have been discussed are merely illustrative.
None of them, nor the discussions relating to them, are
intended to limit the scope of protection in any way. Numer-
ous other embodiments are also contemplated. These
include embodiments that have fewer, additional, and/or
different components, steps, features, objects, benefits, and
advantages. These also include embodiments in which the
components and/or steps are arranged and/or ordered dif-
ferently.

For example, the data processing system 101 and the data
storage system 103 may be combined into a single compo-
nent such as a microcomputer. For example, the one or more
feedback controllers 150 may be part of the object test
system 102 or part of the data processing system 101.

Unless otherwise stated, all measurements, values, rat-
ings, positions, magnitudes, sizes, and other specifications
that are set forth in this specification, including in the claims
that follow, are approximate, not exact. They are intended to
have a reasonable range that is consistent with the functions
to which they relate and with what is customary in the art to
which they pertain.

All articles, patents, patent applications, and other publi-
cations that have been cited in this disclosure are incorpo-
rated herein by reference.
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The phrase “means for” when used in a claim is intended
to and should be interpreted to embrace the corresponding
structures and materials that have been described and their
equivalents. Similarly, the phrase “step for” when used in a
claim is intended to and should be interpreted to embrace the
corresponding acts that have been described and their
equivalents. The absence of these phrases from a claim
means that the claim is not intended to and should not be
interpreted to be limited to these corresponding structures,
materials, or acts, or to their equivalents.

The scope of protection is limited solely by the claims that
now follow. That scope is intended and should be interpreted
to be as broad as is consistent with the ordinary meaning of
the language that is used in the claims when interpreted in
light of this specification and the prosecution history that
follows, except where specific meanings have been set forth,
and to encompass all structural and functional equivalents.

Relational terms such as “first” and “second” and the like
may be used solely to distinguish one entity or action from
another, without necessarily requiring or implying any
actual relationship or order between them. The terms “com-
prises,” “comprising,” and any other variation thereof when
used in connection with a list of elements in the specification
or claims are intended to indicate that the list is not exclusive
and that other elements may be included. Similarly, an
element preceded by an “a” or an “an” does not, without
further constraints, preclude the existence of additional
elements of the identical type.

None of the claims are intended to embrace subject matter
that fails to satisfy the requirement of Sections 101, 102, or
103 of the Patent Act, nor should they be interpreted in such
a way. Any unintended coverage of such subject matter is
hereby disclaimed. Except as just stated in this paragraph,
nothing that has been stated or illustrated is intended or
should be interpreted to cause a dedication of any compo-
nent, step, feature, object, benefit, advantage, or equivalent
to the public, regardless of whether it is or is not recited in
the claims.

The abstract is provided to help the reader quickly ascer-
tain the nature of the technical disclosure. It is submitted
with the understanding that it will not be used to interpret or
limit the scope or meaning of the claims. In addition, various
features in the foregoing detailed description are grouped
together in various embodiments to streamline the disclo-
sure. This method of disclosure should not be interpreted as
requiring claimed embodiments to require more features
than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus, the
following claims are hereby incorporated into the detailed
description, with each claim standing on its own as sepa-
rately claimed subject matter.

The invention claimed is:

1. An object investigation and classification system com-
prising:

an object test system that includes one or more actors and
sensors and that receives a command to perform at least
one action with a test object, performs the at least one
action with the test object, and returns test information
indicative of at least one percept resulting from the at
least one action;

a data storage system that includes one or more tangible
hardware memories and that contains an experience
database containing data indicative of multiple classi-
fications and, for each classification, at least one action
that was performed with at least one previously-ob-
served reference object having this classification, and at
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least one percept value that is based in whole or in part

on the test information resulting from the at least one

action; and

a data processing system that includes one or more

hardware processors and that:

a) for each of multiple different classifications, com-
putes or receives an initial prior probability that a test
object falls within the classification;

b) determines at least one action that should be per-
formed with the test object to obtain at least one
percept about the test object that is likely to enable
the classification of the test object to be more accu-
rately determined based on the initial prior probabili-
ties and the data within the experience database;

c) causes the object test system to perform the at least
one action with the test object;

d) receives test information from the object test system
indicative of at least one percept resulting from the
at least one action with the test object;

e) computes at least one percept value;

) for each of multiple different classifications, deter-
mines a posterior probability that the test object falls
within the classification based on the initial prior
probability, the at least one percept value, and data
within the experience database;

g) determines whether any of the posterior probabilities
meets or exceeds a threshold;

h) if none of the posterior probabilities meet or exceed
the threshold, repeats b) through 1), substituting the
posterior probabilities determined in f) for the initial
prior probabilities in b); and

1) when one or more of the posterior probabilities meets
or exceeds the threshold, outputs information indica-
tive of one or more of the classifications that corre-
spond to the one or more posterior probabilities that
meets or exceeds the threshold.

2. The object investigation and classification system of
claim 1 wherein the data in the experience database includes
data indicative of a distribution of percept values for at least
one of the percepts resulting from an action that has been
performed multiple times in association with a given clas-
sification or a given previously observed reference object.

3. The object investigation and classification system of
claim 1 wherein the threshold is not the same during all of
the repetitions of g).

4. The object investigation and classification system of
claim 1 wherein the data processing system adds data about
at least one of the percepts indicated by the received test
information to the experience database.

5. The object investigation and classification system of
claim 4 wherein the data processing system determines
which of the percepts indicated by the received test infor-
mation should have data about them added to the experience
database based on the degree to which the at least one action
that led to each percept caused a change in the probability
that the test object has one or more of the classifications.

6. The object investigation and classification system of
claim 1 wherein the data processing system determines if the
percept values of at least one percept resulting from the at
least one action performed with the test object is substan-
tially unlike the percept values of the same at least one
percept resulting from the same at least one action associ-
ated with any of the classifications described in the experi-
ence database.

7. The object investigation and classification system of
claim 6 wherein the data processing system adds the percept
values of at least one percept resulting from the at least one
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action with the test object to the experience database in
association with a new classification that was not in the
experience database when the data processing system deter-
mines that the percept values of at least one percept resulting
from at least one action performed with the test object is
substantially unlike the percept values of the same at least
one percept resulting from the same at least one action
associated with any of the classifications described in the
experience database.

8. The object investigation and classification system of
claim 7 wherein the data processing system determines at
least one additional action to perform with the test object to
obtain at least one percept associated with the at least one
additional action and adds the percept value of the at least
one percept resulting from the at least one additional action
to the experience database.

9. The object investigation and classification system of
claim 1 wherein the initial prior probabilities are the same.

10. The object investigation and classification system of
claim 1 wherein the initial prior probabilities are weighted
based on the number of times each classification has been
associated with a previously-observed reference object in
the experience database.

11. The object investigation and classification system of
claim 1 wherein:

the experience database also contains data indicative of a
time when each percept was obtained; and

the initial prior probabilities are weighted based on the
time each percept was obtained.

12. The object investigation and classification system of

claim 1 wherein:

the experience database also contains data indicative of a
location where each percept was obtained; and

the initial prior probabilities are weighted based on the
location each percept was obtained.

13. The object investigation and classification system of
claim 1 wherein the determines at least one action that
should be performed includes:

a) for each classification, computing a probability density
function that describes a distribution of percept values
expected for a percept resulting from an action that has
been performed multiple times in association with the
classification;

b) computing a degree to which two different probability
density functions for two different classifications result
in similar distributions of the percept values of the
same percept when performing the same action;

¢) multiplying the degree computed in 13b) by the prior
probability that the test object has each classification
used to compute the degree in 13b);

d) repeating 13b) and 13c) for all other possible pairs of
classifications;

e) summing the results of all of the multiplications in
13¢);

f) repeating 13a)-13e) for each of the other combinations
of actions and percepts; and

g) selecting the action that yields the lowest summing
value in 13e) for any percept as the action to be
performed.

14. The object investigation and classification system of
claim 13 wherein previously performed actions with the test
object are given less preference in being re-selected as the
action to be performed if the previously performed action
was unsuccessful in producing percept values that help
discriminate between the most likely classifications.

15. The object investigation and classification system of
claim 1 wherein the object test system includes:
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at least one controllable actuator that performs the at least
one action with the test object; and

at least one tactile sensor that interacts with the test object
and returns the test information indicative of at least
one percept resulting from the at least one action.

16. The object investigation and classification system of
claim 15 wherein the at least one action with the test object
includes:

sliding across a surface of the test object; or

contacting the test object with a varying force.

17. The object investigation and classification system of
claim 15 wherein the data processing system processes the
test information indicative of the at least one percept is
processed to indicate:

a type of surface texture on the test object;

a degree of roughness or smoothness of the test object;

a degree of coarseness or fineness of the test object;

a degree of hardness or softness of the test object;

a degree to which the test object has a springiness or
dampens; or

a thermal property of the test object.

18. A non-transitory, tangible, hardware, computer-read-
able storage medium containing a program of instructions
that cause a computer system that includes one or more
processors running the program of instructions to perform
the following functions in connection with an object test
system that includes one or more actors and sensors and that
receives a command to perform at least one action with a test
object, performs the at least one action with the test object,
and returns test information indicative of at least one percept
resulting from the at least one action; and a data storage
system that includes one or more tangible hardware memo-
ries and that contains an experience database containing data
indicative of multiple classifications and, for each classifi-
cation, at least one action that was performed with at least
one previously-observed reference object having this clas-
sification, and at least one percept value that is based in
whole or in part on the test information resulting from the at
least one action:

a) for each of multiple different classifications, computes
or receives an initial prior probability that a test object
falls within the classification;

b) determines at least one action that should be performed
with the test object to obtain at least one percept about
the test object that is likely to enable the classification
of the test object to be more accurately determined
based on the initial prior probabilities and the data
within the experience database;

¢) causes the object test system to perform the at least one
action with the test object;

d) receives test information from the object test system
indicative of at least one percept resulting from the at
least one action with the test object;

e) computes at least one percept value;

1) for each of multiple different classifications, determines
a posterior probability that the test object falls within
the classification based on the initial prior probability,
the at least one percept value, and data within the
experience database;

g) determines whether any of the posterior probabilities
meets or exceeds a threshold;

h) if none of the posterior probabilities meet or exceed the
threshold, repeats b) through 1), substituting the poste-
rior probabilities determined in f) for the initial prior
probabilities in b); and

i) when one or more of the posterior probabilities meets
or exceeds the threshold, outputs information indicative
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of one or more of the classifications that correspond to
the one or more posterior probabilities that meets or
exceeds the threshold.

19. The storage medium of claim 18 wherein the data in
the experience database includes data indicative of a distri-
bution of percept values for at least one of the percepts
resulting from an action that has been performed multiple
times in association with a given classification or a given
previously observed reference object.

20. The storage medium of claim 18 wherein the threshold
is not the same during all of the repetitions of g).

21. The storage medium of claim 18 wherein the program
of instructions causes the computer system running the
program of instructions to add data about at least one of the
percepts indicated by the received test information to the
experience database.

22. The storage medium of claim 21 wherein the program
of instructions causes the computer system running the
program of instructions to determine which of the percepts
indicated by the received test information should have data
about them added to the experience database based on the
degree to which the at least one action that led to each
percept caused a change in the probability that the test object
has one or more of the classifications.

23. The storage medium of claim 18 wherein the program
of instructions causes the computer system running the
program of instructions to determine if the percept values of
at least one percept resulting from the at least one action
performed with the test object is substantially unlike the
percept values of the same at least one percept resulting from
the same at least one action associated with any of the
classifications described in the experience database.

24. The storage medium of claim 23 wherein the program
of instructions causes the computer system running the
program of instructions to add the percept values of at least
one percept resulting from the at least one action with the
test object to the experience database in association with a
new classification that was not in the experience database
when the data processing system determines that the percept
values of at least one percept resulting from at least one
action performed with the test object is substantially unlike
the percept values of the same at least one percept resulting
from the same at least one action associated with any of the
classifications described in the experience database.

25. The storage medium of claim 24 wherein the program
of instructions causes the computer system running the
program of instructions to determine at least one additional
action to perform with the test object to obtain at least one
percept associated with the at least one additional action and
adds the percept value of the at least one percept resulting
from the at least one additional action to the experience
database.

26. The storage medium of claim 18 wherein the initial
prior probabilities are the same.

27. The storage medium of claim 18 wherein the initial
prior probabilities are weighted based on the number of
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times each classification has been associated with a previ-
ously-observed reference object in the experience database.

28. The storage medium of claim 18 wherein the experi-
ence database also contains data indicative of a time when
each percept was obtained and the initial prior probabilities
are weighted based on the time each percept was obtained.

29. The storage medium of claim 18 wherein the experi-
ence database also contains data indicative of a location
where each percept was obtained and the initial prior prob-
abilities are weighted based on the location each percept was
obtained.

30. The storage medium of claim 18 wherein the deter-
mines at least one action that should be performed includes:

a) for each classification, computing a probability density
function that describes a distribution of percept values
expected for a percept resulting from an action that has
been performed multiple times in association with the
classification;

b) computing a degree to which two different probability
density functions for two different classifications result
in similar distributions of the percept values of the
same percept when performing the same action;

¢) multiplying the degree computed in 30b) by the prior
probability that the test object has each classification
used to compute the degree in 30b);

d) repeating 30b) and 30c) for all other possible pairs of
classifications;

e) summing the results of all of the multiplications in
30c);

f) repeating 30a)-30e) for each of the other combinations
of actions and percepts; and

g) selecting the action that yields the lowest summing
value in 30e) for any percept as the action to be
performed.

31. The storage medium of claim 30 wherein previously
performed actions with the test object are given less pref-
erence in being re-selected as the action to be performed if
the previously performed action was unsuccessful in pro-
ducing percept values that help discriminate between the
most likely classifications.

32. The storage medium of claim 18 wherein the at least
one action with the test object includes:

sliding across a surface of the test object; or

contacting the test object with a varying force.

33. The storage medium of claim 18 wherein the data
processing system processes the test information indicative
of the at least one percept is processed to indicate:

a type of surface texture on the test object;

a degree of roughness or smoothness of the test object;

a degree of coarseness or fineness of the test object;

a degree of hardness or softness of the test object;

a degree to which the test object has a springiness or
dampens; or

a thermal property of the test object.
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